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Abstract

Ideas of Knödel and Böhm-Hornik about walks in certain graphs, resembling the classical
symmetric random walk on the integers, are combined. All the relevant generating functions
(although occasionally quite involved) are made fully explicit. The treatment has an educational
flavour as well.
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1 Introduction

The standard random walk on the non-negative integers may be visualized by the following graph
(only the first 8 states are shown):

0 1 2 3 4 5 6 7 8

Figure 1: Standard symmetric random walk on the non-negative integers

One starts in state 0 and can go up/down one step, each with the same probability. Various
questions have been studied, like the probability to end in state k. For k = 0, this leads to the
celebrated Catalan numbers, one of the most important sequences in Discrete Mathematics. Catalan
numbers appear as sequence A000108 in the Encyclopedia of Integer Sequences, Sloane (2018).

Böhm and Hornik (2010) introduced a related model: up-steps occur with probability α and down-
steps occur with probability β = 1−α, but after each step α and β change their roles. One motivation
of this model was to study flexible chain modules in chemistry. The following graph is useful to grasp
the idea. Comparing this model with the standard random walk, the only differences are the colored
edges, representing the weights/probabilities. When one is in an even-indexed state (the walk has
a current even height), it goes up with probability α; for the odd-indexed states it goes up with
probability β.

Böhm and Hornik (2010) consider random walks on the non-negative integers and on the full set
of integers as well. Alternative/additional analysis can be found in Panny and Prodinger (2016).
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0 1 2 3 4 5 6 7 8

Figure 2: Red edges are labelled with the weight α, blue edges with β

Another twist of a random walk occurs in a model introduced by Knödel Knödel (1983). This idea
fascinated me for 40 years. Although Knödel’s paper appeared in EIK (Elektronische Informationsver-
arbeitung und Kybernetik), which is the predecessor of JALC (Journal of Automata, Languages and
Combinatorics), it is hard to find these days. All we need to know is the following: There are bins
of size 1 and small items (size 1

3 ) and large items (size 2
3 ) arrive with the same probability. There is

an online strategy to fill up the bins. A large item can only go into an empty (new) box, but a small
item can be used to complete a box that contains already a large item, thus reducing the number of
incomplete content by one. There is one notable exception, namely that there is currently no box filled
with a large item. Then the small item must go into a fresh box, according to the online strategy.

Here is the graph, related to the original Knödel problem:

0 1 2 3 4 5 6 7 8

Figure 3: The original Knödel graph

States correspond to boxes filled with just one large item each. There is one exception, when a
small item arrives at the origin. In this case, it cannot be used to complete a partially filled bin, and
an extra state is introduced. See Prodinger (2003) and some referenced papers for analysis.

It is the purpose of this paper to combine the ideas of Knödel and Böhm-Hornik: Large items
arrive with probability α and small items with probability β, but after each step the roles of α and
β are changed. We do not claim that this has too much practical applications at this stage, rather
the intention is to produce an interesting showcase of what is doable with modern tools of computer
algebra.

The graph with two layers of states will explain the scenario readily. It is to be noted that once
one goes to the special state and leaves it via another small item, the roles of even and odd change!
That is why we have now a copy of each state, relative to this change; another change brings us back
to the original situation. The rest of the paper is devoted to derive generating functions for walks
starting at the origin and ending in a prescribed state. The kernel method Prodinger (2003) and the
heavy use of computer algebra (Maple) will be essential. This method expresses unknown generating
functions as a rational function. One or more factors of the denominators do not possess a power
series expansion, which would contradict the combinatorial origin of the problems, hence these factors
must cancel out. For that, division with remainder of the numerator is applied, and, knowing that
there is no remainder, useful relations may be derived. Some people multiply the whole equation by
the denominator and speak about the ‘kernel’, whence the name.

First, in Section 2 we start with a direct approach, which is a brute-force procedure. It leads
to four equations, and eventually to biquadratic equations. Computers are capable of handling this,
but the next section mostly serves as an invitation to a more sophisticated approach, using only two

2



Knodel walks in a Bohm-Hornik Environment 	 123

0 1 2 3 4 5 6 7 8

Figure 4: The Knödel-Böhm-Hornik graph

functions (not four). And, lo and behold, after a certain substitution, the ugly beast turns into a
beautiful swan.

2 Brute-force Analysis

We introduce the following generating functions: fi = fi(z) has as coefficient of zn the probability to
reach state i from the upper layer in n steps, starting from the origin (state 0). The function gi is
similar, but refers to the lower layer of states. Finally, the extra states and their generating functions
are called P resp. Q. P = P (z) is the generating function of all paths ending in the special state in
the top layer, and Q = Q(z) is the generating function of all paths ending in the special state in the
bottome layer.

From the diagram (Figure 4 ), considering the last step made, one can see the recursions

fi = βzfi−1 + αzfi+1, i = 2, 4, 6, . . . ,

fi = αzfi−1 + βzfi+1, i = 3, 5, 7, . . . ,

f1 = αzf0 + βzf2 + βzQ = αzf0 + βzf2 + βαz2g0,

f0 = 1 + βzP + αzf1 = 1 + β2z2f0 + αzf1,

P = βzf0,

gi = αzgi−1 + βzgi+1, i = 2, 4, 6, . . . ,

gi = βzgi−1 + αzgi+1, i = 3, 5, 7, . . . ,

g1 = βzg0 + αzg2 + αzP = βzg0 + αzg2 + αβz2f0,

g0 = αzQ+ βzg1 = α2z2g0 + βzg1,

Q = αzg0.

(1)

In order to attack this system, we introduce a second variable u and consider the following four
bivariate generating functions:

Fe(u) =
∑
i≥0

u2if2i, Fo(u) =
∑
i≥0

u2i+1f2i+1,

Ge(u) =
∑
i≥0

u2ig2i, Go(u) =
∑
i≥0

u2i+1g2i+1;

3
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‘e’ stands for ‘even’, ‘o’ stands for odd. Summing the first recursion over all possible values of i, we
find (omitting the variable u for the moment)

Fe − f0 = βzuFo +
αz

u
(Fo − uf1);

adding the recursion for f0 (see (1)) leads to

Fe = βzuFo +
αz

u
Fo + 1 + β2z2f0.

Similarly, for the odd indices

Fo − uf1 = αzu(Fe − f0) +
βz

u
(Fe − f0 − u2f2)

and further (again using (1), as also for the following two equations)

Fo = αzuFe +
βz

u
(Fe − f0) + uβαz2g0.

The same procedure is done for the even indices and the gi’s:

Ge − g0 = αzuGo +
βz

u
(Go − ug1)

and

Ge = αzuGo +
βz

u
Go + α2z2g0.

Finally, for the odd indices

Go − ug1 = βzu(Ge − g0) +
αz

u
(Ge − g0 − u2g2)

and
Go = βzuGe +

αz

u
(Ge − g0) + uαβz2f0.

For the reader’s convenience we collected the four equations that we (and Maple) have to deal with:

Fe = βzuFo +
αz

u
Fo + 1 + β2z2f0,

Fo = αzuFe +
βz

u
(Fe − f0) + uβαz2g0,

Ge = αzuGo +
βz

u
Go + α2z2g0,

Go = βzuGe +
αz

u
(Ge − g0) + uαβz2f0;

we note again that f0 = Fe(0) and g0 = Ge(0); these are the two equations describing the paths
returning to state 0 in the upper/lower layer. Note further that plugging in u = 0 just leads to
tautologies of the type f0 = f0.

Maple can solve this, but the solution is implicit since it still depends on f0 and g0. The expressions
are quite long, and they all share the same denominator D:

D = u2 − z2u4α− z2u2 + 2u2αz2 + α2z2u4 − 2u2α2z2 − z2α+ z2α2.
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Note here and in other places that the order in which terms appear is how it comes out from the
symbolic computation. The numerators DFe, DFo, DGe, DGo are very long and not displayed here.
The interested reader can find them on the website arxiv.org where a version of this material has been
presented including these expressions. It is to be noted that we replaced β by 1− α to help Maple.

The denominator D has 4 roots, considering u as the variable:

s1 =

√
α(1− α)(1− 2z2α2 + 2z2α− z2 −

√
(1− z)(1 + z)(1− z + 2zα)(1 + z − 2zα))

√
2zα(1− α)

,

s2 = −s1, s3 =
1

s1
, s4 =

1

s2
.

The factors u− s1 and u− s2 are ‘bad’ in the sense of the kernel method Prodinger, 2003/04, i. e.,
they do not lead to a power series expansion around the origin. Consequently, the numerators of the
four functions must be divisible by both factors. Applying this principle to Fe and Ge leads to two
equations, from which f0 and g0 can be computed. Again, the expressions are long, and an auxiliary
quantity W is used:

W =
√
(1− z)(z + 1)(1− z + 2zα)(1 + z − 2zα).

Here are the results:

f0 =
Ξ1

4α2z4(−1 + z)(z + 1)(−1 + α)2(−1 + z2 − 3z2α+ 3z2α2)
,

g0 =
Ξ2

8z7(−1 + z)(z + 1)(−1 + α)4(−1 + z2 − 3z2α+ 3z2α2)α3
.

The long expressions for Ξ1 and Ξ2 can be found in the version on arxiv.org. Plugging these results
in and simplifying, we find explicit expressions for all four generating functions of interest, again with
a common denominator M : M = (−1 + z)(z + 1)(−1 + α)3(−1 + z2 − 3z2α + 3z2α2)(u2 − z2u4α −
z2u2 + 2u2αz2 + α2z2u4 − 2u2α2z2 − z2α+ z2α2). With this, the numerators Mfo, Mfe, Mgo, Mge
become fully explicit; again, they are quite long and not displayed here.

Of course, the expressions are not appealing, but that is what the brute-force approach produces.
The full information of all the states in the graph is packed into the expressions. We will see later
that distinguishing between even and odd makes the problem simpler.

We can derive as many corollaries from this as we want, of course with Maple:

f0 = [u0]Fe = 1 + (2α2 + 1− 2α)z2 + (5α4 − 10α3 + 9α2 − 4α+ 1)z4 + · · · ,
f1 = [u1]Fo = αz + (3α2 − 4α+ 2)αz3 + (8α4 − 19α3 + 20α2 − 11α+ 3)αz5 + · · · ,
f2 = [u2]Fe = α(1− α)z2 + 2(1− α)(2α2 + 1− 2α)αz4 + · · · ,
f3 = [u3]Fo = (1− α)α2z3 + (1− α)(5α2 − 6α+ 3)α2z5 + · · · ,

and similarly

g0 = [u0]Ge = α(1− α)2z3 + (5α2 − 4α+ 2)(1− α)2αz5 + · · · ,
g1 = [u1]Go = α(1− α)z2 + 2(1− α)(2α2 + 1− 2α)αz4,

g2 = [u2]Ge = (1− α)α2z3 + (1− α)(5α2 − 6α+ 3)α2z5 + · · · ,
g3 = [u3]Go = α2(1− α)2z4 + 3α2(2α2 + 1− 2α)(1− α)2z6 + · · · .

These are the power series expansions of the first few terms in fi and gi for i = 0, 1, 2, 3.
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3 A more sophisticated approach

The imbalance of α versus β is leveled out after 2 (or an even number of) steps. Thus, as in Panny
and Prodinger (2016), we consider the system after an even number of steps. In the following graph,
a directed arrow stands for 2 steps (a double-step). Note that the system is still working without
look-ahead (following Knödel’s idea about the online strategy), writing s for the small item of size 1

3
and l for the large item of size 2

3 , the sequences (double-steps) sl resp. ls lead to different states when
being in the special state named Q. Note that we have only ‘half’ (with a grain of salt) of the states
compared to the brute-force approach.

0 2 4 6

1 3 5 7

8

Q

Figure 5: Two steps. Red with probability αβ, green with probability 1− 2αβ = α2 + β2, blue with
probability β2, brown with probability α2.

The graph is now simpler than before. We introduce generating functions fN for the upper layer of
states, and gN for the lower layer of states. The meaning of these generating functions is now different
from the previous section, but it is apparent how they are related. Here are the recursions:

fN = zαβfN−1 + zαβfN+1 + z(α2 + β2)fN , N ≥ 2,

f1 = zαβf0 + zαβf2 + z(α2 + β2)f1 + zβ2fQ,

f0 = 1 + zαβf1 + z(α2 + β2)f0 + zαβfQ,

fQ = zαβg0 + zα2fQ =
zαβg0
1− zα2

,

gN = zαβgN−1 + zαβgN+1 + z(α2 + β2)gN , N ≥ 1,

g0 = zαβf0 + zαβg1 + zαβfQ + z(α2 + β2)g0.

Introducing only two bivariate generating functions

F (u) =
∑
N≥0

uNfN and G(u) =
∑
N≥0

uNgN ,

we find by summing the recursions over all possible indices

F (u) =
∑
N≥0

uNfN = zαβ
∑
N≥2

uNfN−1 + zαβ
∑
N≥2

uNfN+1 + z(α2 + β2)
∑
N≥2

uNfN

+ u(zαβf0 + zαβf2 + z(α2 + β2)f1 + zβ2 zαβg0
1− zα2

)
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+ 1 + zαβf1 + z(α2 + β2)f0 + zαβ
zαβg0
1− zα2

= zαβuF (u) +
zαβ

u
(F (u)− f0) + z(α2 + β2)F (u)

+ uz2β3α
g0

1− zα2
+ 1 + z2α2β2 g0

1− zα2

and

G(u) =
∑
N≥0

uNgN = zαβ
∑
N≥1

uNgN−1 + zαβ
∑
N≥1

uNgN+1 + z(α2 + β2)
∑
N≥1

uNgN

+ zαβf0 + zαβg1 + zαβ
zαβg0
1− zα2

+ z(α2 + β2)g0

= zαβuG(u) +
zαβ

u
(G(u)− g0) + z(α2 + β2)G(u)

+ zαβf0 + z2α2β2 g0
1− zα2

.

Solving the system leads to

F (u) =
−uzα2 + z2α2β2g0u− zαβf0 + z2α3βf0 + u+ u2z2β3αg0

u− 2uzα2 − zαβu2 + z2α3βu2 − zαβ + z2α3β + z2uα4 − zuβ2 + z2uβ2α2
,

G(u) = − zαβ(−zαβg0u+ g0 − g0zα
2 + zα2f0u− f0u)

u− 2uzα2 − zαβu2 + z2α3βu2 − zαβ + z2α3β + z2uα4 − zuβ2 + z2uβ2α2
.

These answers are implicit, since they contain f0 = F (0) and g0 = G(0). Plugging in u = 0 at that
stage would just lead to tautologies like f0 = f0 and g0 = g0. To remedy the situation and make the
expression explicit, the kernel method is used once again. As before, after cancelling the ‘bad factor
’ from numerator resp. denominator (in the spirit of the kernel method) in both instances, one can
solve! The denominators factor as

zαβ(−1 + zα2)(u− r1)(u− r2)

with

r2 =
1− zα2 − zβ2 −

√
z2α4 − 2z2β2α2 − 2zα2 + z2β4 − 2zβ2 + 1

2zαβ

and r1 = 1
r2
. Notice that our more sophisticated treatment does not make it necessary to replace β

by 1− α.
The factor (u − r2) (the ‘bad’ factor) must cancel from numerator and denominator. Maple can

perform the division with remainder with little effort. All we have to do then is to ignore the remainder
since we know a priori that is must be 0. The result is now

F (u) =
r2z

2β3αg0 − zα2 + z2α2β2g0 + 1 + uz2β3αg0
zαβ(−1 + zα2)(u− r1)

and

G(u) =
−(−zαβg0 + zα2f0 − f0)

(−1 + zα2)(u− r1)
.
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Plugging in u = 0 leads now to manageable equations,

f0 =
r2z

2β3αg0 − zα2 + z2α2β2g0 + 1

zαβ(−1 + zα2)(−r1)
,

g0 =
(−zαβg0 + zα2f0 − f0)

(−1 + zα2)r1
.

From these, we can compute f0 and g0 easily, but do not print it, since it is not too attractive at the
moment (in a moment, it will become very beautiful).

It is easy to see by reading off the coefficient of uj that

[uj ]G(u) =
(−zαβg0 + zα2f0 − f0)

(−1 + zα2)
rj+1
2

and

[uj ]F (u) = −rj+1
2

r2z
2β3αg0 − zα2 + z2α2β2g0 + 1

zαβ(−1 + zα2)
− rj2

zβ2g0
(−1 + zα2)

.

This is easy since the variable u appears only once in the respective denominators. To say it again,
f0 and g0 are known functions at this stage (just not printed).

Note that [zmuj ]F (u) is the probability to reach state 2j in m (double-)steps, and [zmuj ]G(u) is
the probability to reach state 2j + 1 in m (double-)steps.

More attractive formulæ thanks to a substitution

Using the substitution

z =
v

αβ + (α2 + β2)v + αβv2
=

v

(α+ vβ)(β + vα)
,

(inspired by our old paper Panny and Prodinger, 2016) all the expressions become nicer.1 For instance,
r2 = v and

f0 =
(vα+ β)(α+ vβ)

αβ(1− v)(v2 + v + 1)
,

g0 =
v(α+ αv2 + vβ)(vα+ β)

αβ(1− v)(v2 + v + 1)
.

The equality (1− v)(v2 + v + 1) = 1− v3 might be useful as well. Even the full bivariate generating
functions look now very nice:

F = F (z, u) =
(uv3β + α+ vβ)(vα+ β)

βα(1− uv)(1− v)(v2 + v + 1)
,

G = G(z, u) =
v(α+ αv2 + vβ)(vα+ β)

βα(1− uv)(1− v)(v2 + v + 1)
.

1Compare this with the Joukowsky transform, https://en.wikipedia.org/wiki/Joukowsky transform.
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Consequently, reading off coefficient of powers of u,

[uj ]F =
vj(α+ vβ)(vα+ β)

βα(1− v)(v2 + v + 1)
+

vj+1

α(1− v)(v2 + v + 1)

and

[uj ]G =
vj+1(α+ αv2 + vβ)(vα+ β)

βα(1− v)(v2 + v + 1)
.

Finally we answer the question how to read off coefficients of powers of z when the function is given
in terms of v. We describe in this way how to switch back from the v-notation to the z-notation.

For that, we employ Cauchy’s integral formula in the following computation,

[zN ]H(z(v)) =
1

2πi

∮
dz

zN+1
H(z(v))

=
1

2πi

∮
dv

vN+1

αβ(1− v2)

(α+ βv)(β + αv)
(α+ βv)N+1(β + αv)N+1H(v)

= [vN ]αβ(1− v2)(α+ βv)N (β + αv)NH(v).

For interest, we state that

v =
1− z + 2zαβ −

√
(1− z)(1− z + 4zαβ)

2zαβ
.

Walks with an odd number of steps

For that, we do not need to do new calculations, by considering the last step separately. We refer to
the original Figure 4. It is immediate to see that

P{reach top level state 2j + 1 in 2m+ 1 steps}
= αP{reach top level state 2j in 2m steps}
+ βP{reach top level state 2j + 2 in 2m steps}

and

P{reach bottom level state 2j in 2m+ 1 steps}
= αP{reach bottom level state 2j − 1 in 2m steps}
+ βP{reach bottom level state 2j + 1 in 2m steps};

the exceptional cases near the beginning are easy to figure out directly. Of course these considerations
are simple observations using the previously obtained results.

4 Asymptotics

Although this paper concentrates on explicit enumerations, some asymptotic considerations might be
of interest. One natural concept would the height of a Knödel walk, i. e., the state with the highest
index that is reached during the walk. For simpler walks, this has been worked out in Prodinger (1992),

9
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compare Panny and Prodinger (2016). However, that would be a completely different approach, and
we have chosen the kernel method as the unifying method of choice in this paper.

We can, however, offer something appealing here, namely we compute the average index of the
state where the walks ends (in the sophisticated version). So we compute

expected-end =
∑
k≥0

(2k)fk +
∑
k≥0

(2k + 1)gk.

This is best computed using the bivariate generating functions:

expected-end =
∂

∂u

(
F (u2, z) + uG(u2, z)

)∣∣∣∣
u=1

=
v (vα+ β)

(
3v2β + 3α+ 3vβ + vα+ αv2 + αv3

)

αβ (1− v)
3
(1 + v + v2)

.

To find asymptotics, we transfer back from v to z. In order to avoid ungainly expressions that the
reader can generate himself/herself with a computer, we demonstrate the procedure for the standard
case α = β = 1

2 . Then

v =
−z + 2− 2

√
1− z

z
∼ z

4
+

z2

8
+ · · ·

and

expected-end =
z − 1 + (1 + z)

√
1− z

2(1− z)2
∼ 1

(1− z)3/2
.

The coefficient of zn in this expression is
(−3/2

n

)
(−1)n ∼ 2

√
n
π , which is the answer to the question

about the average index where the walk stops. In the general instance, the singularity of interest is
z ∼ 1, which is equivalent to v ∼ 1, and

1− v ∼ 1√
αβ

√
1− z.

But

expected-end ∼ 2

αβ

1

(1− v)3
∼ 2

√
αβ

1

(1− z)3/2
,

whence the result in the general case is ∼ 4
√
αβ

√
n
π .

The method of local expansions around the dominant singularity (here z = 1) and then translating
into the behaviour of the coefficients is called singularity analysis of generating functions. Standard
references are Flajolet and Sedgewick (2009) and Flajolet and Odlyzko (1990).

One could treat this particular problem as well with more elementary methods, but since the
generating functions were already at hand, we just used them. Again, this example just highlights
the type of asymptotic investigations that one could make. More complicated questions would not fit
in here.
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5 Conclusion

We want to emphasize the following points:

A brute-force approach is possible, but leads to equations of order 4 and explicit but very
ungainly expressions.

Looking at the system after an even number of steps is a clever idea, since the imbalance of α
versus β is leveled out. The equations are only quadratic.

Introducing an auxiliary variable, all the generating functions become rational (in the variable).
Consequently reading off coefficients is not difficult.

To go from an even number of steps to an odd number of steps is not difficult, when considering
the last step separately and use previous results.

Once the generating functions of interest are known explicitly, several corollaries of an asymptotic
nature can be derived from them.

One might wonder which lattice path problems are amenable to the kernel method. A general
answer is difficult. The following texts contain a variety of examples: Banderier and Flajolet (2002),
Prodinger (2003), Prodinger (2023).
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